Variables, Operators: Recipes for Art

Intro
- Introduce ourselves
- Course overview:
 - what we’ll learn: programming, writing algorithms for art, python, bits of Maya
 - what we won’t: Maya, special effects, virtual environments, making things pretty
 - where we’ll start: etch a sketch
 - where we’re going (depending on how the class progresses): flocking & fractals
- Syllabus/Schedule

Conversation
- what is a computer?
 - input, do something (algorithm or program), output
 - black box drawing
 - interpreter: type something, get the result (>>> 2 + 2)
- writing a recipe (whiteboard)
 - you = chef, computer = assistant, user = hungry
 - plan ingredients, sketch it out, cook in small steps (tasting at each step)
- the basics (values and types, expressions and operators, variables)

<table>
<thead>
<tr>
<th>First Experiments:</th>
<th>Return Value Type Experiments:</th>
</tr>
</thead>
<tbody>
<tr>
<td>>>> print "howdy"</td>
<td>>>> 21 / 4</td>
</tr>
<tr>
<td>>>> 2 + 2</td>
<td>>>> 21 / 4.0</td>
</tr>
<tr>
<td>>>> 3 * 2</td>
<td>>>> 5 + 7</td>
</tr>
<tr>
<td>>>> 12 - 3</td>
<td>>>> "5" + "7"</td>
</tr>
<tr>
<td>>>> 20 / 4</td>
<td>>>> 5 + "7"</td>
</tr>
<tr>
<td>>>> 21 % 4</td>
<td>>>> "stuff"</td>
</tr>
<tr>
<td>>>> 3**2</td>
<td>>>> 5 > 4</td>
</tr>
<tr>
<td></td>
<td>>>> 5 < 4</td>
</tr>
<tr>
<td></td>
<td>>>> "cat" == "dog"</td>
</tr>
<tr>
<td></td>
<td>>>> "cat" == "cat"</td>
</tr>
<tr>
<td></td>
<td>>>> stuff</td>
</tr>
<tr>
<td></td>
<td>>>> stuff = 42</td>
</tr>
<tr>
<td></td>
<td>>>> stuff + 5</td>
</tr>
</tbody>
</table>

Variables
- Variables are places to store things. A variable can hold a single value (like an integer or a string) or it can hold a list of values.
- Use the ‘=’ sign to assign a value to a variable.

Basic Return Types
- Integer - a whole number: 0, 1, 2, 3 ...
- Floating Point - a number with decimal values: 3.14159
- String - a series of characters: "stuff"
- Boolean - either True or False (usually as the result of a comparison, i.e. 4 > 5 or 5 == 6)

- **Using modules**
 - >>> sqrt(4)
 - >>> import math
 - >>> sqrt(4)
 - >>> math.sqrt(4)
 - >>> from math import sqrt
 - >>> sqrt(4)
 - >>> sqrt(-1)

- **Code-to-visuals connection** (idle - turtle)
 - 2D coordinates (draw cartesian axes)
 - turtle drawing (pen metaphor) (automaton from Hugo)
 - up/down
 - forward backward
 - right/left
 - Example: draw a line
 - Example: recipe for a square (sequencing)
 - Challenge: draw an equilateral triangle (60 degree corners, equal-length sides)
 - Example: draw a 5 point star (explain the math for the corner angle)
 - Challenge: draw a 6 point star
 - this is really two triangles
 - need a transformation in between (translation + rotation) -- define these terms!
 - translation first - half of the length of a side
 - rotate to look up, then move up, how far?
 - pythagorean theorem: a**2 + b**2 = c**2
 - solve for b! (PEMDASR -- order of operations)
 - rotate again
 - recap steps of transformation (write pseudocode) then write the recipe

- **Assignment**
 - Read Think Python 1-2
 - Draw your dream house/car/something-man-made with the turtle

- **Next time...**
 - [Spirographs](#)